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Synopsis 

A theoretical study of the stability of extending liquid filaments has been carried out. The in- 
teraction of surface tension and different fluid rheological properties is investigated. I t  is also 
hypothesized that cohesive failure or fracture will occur if a critical stress level is reached. It is 
predicted that viscosity and viscoelasticity tend to stabilize the filaments. However, even ex- 
tremely high viscosity filaments will neck and exhibit ductile failure. In highly viscoelastic 
fluids, defects tend to heal during stretcb. Highly viscoelastic fluid filaments fail by fracture. 
The theory is used to predict the failure of molten polymer filaments as a function of molecular 
weight. The extensibility or spinnability of filaments is predicted to exhibit a maximum a t  in- 
termediate molecular weights with capillarity-ductile failure occurring a t  low molecular weights 
and cohesive fracture, a t  high molecular weights. The results are compared to experiments on 
polyethylenes. There is general qualitative agreement especially with the behavior of low and 
high molecular weights where capillarity and fracture occur. The tendency to necking and duc- 
tile failure differs considerably among melts and is more pronounced in high-density than in low- 
density polyethylenes. The application to continuous spinline behavior is discussed, and draw 
resonance is suggested to be the continuous process analogue of ductile failure. 

INTRODUCTION 

No problem is more fundamental to polymer rheology or to the fiber indus- 
try than the factors determining the ability to form threads from polymer so- 
lutions and melts. The problem dates to the very beginnings of the polymer 
industry, with the melt spinning of thread from gutta percha being described 
in the patent literature as early as 1845.’ A decade later, Audemars proposed 
the manufacture of fiber from solutions of cellulose nitrate plus rubber in 
ether-alcohol solutions; and in the 1880’s and 1890’s, Chardonnet and others 
commercially spun cellulosic fibers from solution.2 In the present century, 
Carothers and Hill3 have suggested and described the formation of synthetic 
fibers from both synthetic polymer melts and their solutions. A great indus- 
try has been built on these processes. 

One cannot easily form fibers from all polymer melts nor from all solutions; 
and as far back as 1933, Carothers and Van Natta4 studied the influence of 
molecular weight on fiber formation. I t  is our purpose here to consider this 
ability of fluids to be stretched out into filaments of small diameter. We 
shall refer to it as the spinnability of the fluid. It was not until the postwar 
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period that studies of the mechanism of spinnability of polymer fluid fila- 
ments began to appear. Nitschmann and Schrade5 called attention to ductile 
failure mechanisms and noted that an elongational viscosity that increased 
with extension rate would stabilize the filament. The existence of such an ef- 
fect in the theory of viscoelastic fluids and its stabilizing influence were noted 
by Lodge,6 White,7 and Chang and Lodge:.9 among others. HirailO suggest- 
ed that filament instability was due rather to capillarity. Ziabicki and Tak- 
~erman-Krozer’~-~~ have argued against the ductile failure mechanism and 
proposed instead that, filaments fail according to either capillarity or a “cohe- 
sive” fracture mechanism depending upon the rheological properties of the 
fluid, with the former mechanism dominating in low-viscosity systems. More 
recently, Onogi, Matsumoto, and Kamei14 have initiated a comprehensive ex- 
perimental study of the tensile failure of molten polymer filaments as a func- 
tion of molecular weight. White and Tokita15 and Cogswell and Hubbard16 
have given general discussions of various types of failure phenomena during 
polymer processing. 

It is the authors’ view that each of the above views on spinnability is, in 
some respects, correct. However, no generally consistent theory which in- 
cludes and properly integrates all of these effects has been developed. This 
is the purpose of the present paper. We believe that each of three mecha- 
nisms-capillarity, ductile failure, and fracture-must be considered in any 
self-consistent theory. To be specific, by capillarity we mean the surface 
tension-induced breakup of filaments into drops or ligaments (see Fig. la). 
The action of surface tension to propagate disturbances and cause the break- 
up of a liquid c01umn’~J~ was first proposed by Plateau about one hundred 
years ago and was then considered by Rayleighlg-zz in some detail using the 
methods of linear stability analysis. There have been numerous variations 
and attempts a t  e x t e n ~ i o n ~ ~ - ~ ~  of Rayleigh’s analysis including studies of 
nonlinear stability.z6-28 The capillarity instability in viscoelastic fluid jets 
has been considered by Middlemanz9 and by Yerushalmi, Shinnar, and their 
c o - w o r k e r ~ . ~ ~ , ~ ~  

By ductile failure we mean a 100?/0 reduction in cross section within a neck 
caused by the high local stress level (see Fig. lb). The problem of ductile 
failure of filaments, i.e., failure due to the growth of a neck, was first consid- 
ered by metallurgists investigating the failure of steel and other metals. The 
concept is implicit in much of the early l i t e r a t ~ r e ? ~ , ~ ~  but the first analysis of 
stress concentrations leading to neck development is due to Nadai and Man- 
j ~ i n e . ~ ~  This was later reformulated and elaborated on by O r ~ w a n . ~ ~  A 
careful discussion of necking in solid polymers was given by Vincent.36 Re- 
cently, Chang and Lodge8 have analyzed neck development in a nonlinear vis- 
coelastic fluid using a formulation similar to or ow an'^^^ and found viscoelas- 
ticity to be stabilizing. Detailed stress analyses in a necked region of a plas- 
tic material described by a von Mises criterion have been given by Bridg- 
man.37 

The interaction between ductile and surface tension instabilities has re- 
ceived little attention but is implicit in work of Tomotikaz5 and F l ~ m e r f e l t . ~ ~  

By fracture we mean a cohesive failure involving the instantaneous reduc- 
tion of a finite cross section, i.e., a break (see Fig. lc). Theories of fracture 
based on critical stresses and energies date to the 19th c e n t u r ~ . ~ ~ , ~ ~  The sit- 
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Fig. 1. Mechanisms of filament instability: (a) capillarity; (b) ductile failure; (c) fracture, 

uation is, however, complex for, as shown by Griffith,39 fracture is generally 
associated with the presence of microscopic defects. In metals, fracture often 
occurs in a developing neck as discussed by O r ~ w a n ~ ~  and Nadai33,34 and oth- 
ers so that the ductile failure and fracture mechanisms are combined. Most 
studies of the catastrophic failure of solids deal with materials which exhibit 
elastic or elastic-plastic response. In working with polymer melts, we are 
dealing, however, with viscoelastic fluids and not solids, and there are very 
characteristic differences in response. Most importantly, a viscoelastic fluid 
may exhibit large deformations when stretched at  small rates and “fracture” 
only with rapid deformations. Reiner and Fre~dentha1~~7~O and Reiner and 
W e i ~ s e n b e r g ~ ~  view this in terms of the energetic theory of strength and pro- 
pose that we must divide the energy of deformation or stress work into dissip- 
ative and recoverable parts-apd that only the recoverable deformation ener- 
gy contributes to failure. For a simple Maxwell fluid, this leads to a critical 
stress criterion. While Reiner et al. do not consider the influence of defects, 
it would seem that the appropriate modification of the essence of Griffith’s 
theory would be the use of the recoverable energy. 

We will specifically investigate the question of how this ability to form fi- 
bers by extending a fluid filament would vary in a homologous series of or- 
ganic compounds ranging from low molecular weights to polymers. This 
theory of spinnability will be constructed using the methods of linear stabili- 
ty analysis. We will also look a t  comparisons to experiment. In the final 
part of the paper, we will relate our results to continuous melt-spinning oper- 
ations. This paper is a continuation of earlier studies at  the University of 
Tennessee on the rheology and development of structure during fiber forma- 
t i0n~I-~7 and, most specifically, the papers of Chen, Hagler, Abbott, Bogue, 
and White42 and Takaki and B ~ g u e ~ ~  which study the stretching of molten 
polymer filaments. 

HOMOGENEOUS DEFORMATION OF FLUID FILAMENTS 

For a fluid filament of radius R and length L in uniaxial extension (see Fig. 

(1) 

2), 

v = u l ( x l ) e l +  u 2 ( 4 e 2  + udx3)e3 

with u 2  equal to u3. Here, the rate of deformation tensor d is 
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where 

Fig. 2. A fluid filament in uniaxial extension. 

au 1 
ax 1 

E = -  

and for constant E ,  the filament deforms according to 

L = L(0)eEt R = R(0)e-Et/2 

The rheological properties of fluids vary considerably with molecular struc- 
ture, and this variation would seem to have a very strong influence on spinna- 
bility. Nowhere is this variation as striking in organic compounds, especially 
in homologous series varying from low molecular weights to p ~ l y r n e r s . ~ ~ , ~ ~ ~ ~  
Low molecular weight compounds behave as Newtonian fluids, while high 
molecular weight polymers are viscoelastic. 

For Newtonian fluids, the stress tensor Q may be represented as17J8958 

Q = -PI + 2qd (4) 

The stress in a Newtonian fluid filament is 

u = - y l R I + ! O  xE 0 0 0 01 

0 0 0  
with 

x = 30 (5b) 
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where y is the surface tension and a22 and a33 equal to ( - y /R)  follows from 
the boundary conditions on the surface of the ~ y l i n d e r . ~ ~ J ~ * ~ ~  The quantity 
x is known as the elongational viscosity and, its equality to 3q is due to Trou- 
ton.GO 

We will to a large extent be concerned with polymeric fluids which possess 
viscoelastic rather than simple viscous properties. For viscoelastic fluids, the 
stress depends upon the entire deformation history of the fluid. The sim- 
plest type of viscoelastic fluid model is the one-dimensional equation of Clerk 
M a x ~ e l l . ~ ~ ? ~ ~  The generalization of Maxwell’s constitutive equation to a 
three-dimensional form valid for large deformations is not unique, but the 
most useful such generalization is White and M e t z n e r ’ ~ ~ ~ ~ ~ ~ :  

a = - p I + P  ( 6 4  
6P 

P + ~ - = 2 q d  
6 t  

where 

is Oldroyd’s contravariant convected derivativeG4 and 7 is a relaxation time. 
The asymptote of 7 being equal to zero is the Newtonian fluid case. In sim- 
ple shear flow, 

v = +xzel + O e 2  + Oe3 (7) 

where + is the shear rate. Equation (6) leads to a shear viscosity q and a first 
normal stress difference of with a zero second normal stress difference. 
This is in reasonable agreement with e ~ p e r i m e n t ? ~ . ~ ~  especially if we take 7 

to be a function of deformation rate.62 In small deformation oscillatory ex- 
periments, the agreement of eq. (6) with experimental data is only qualita- 
tive.66 

The rheological response of a viscoelastic fluid of the type described by eq. 
(6) to a uniform uniaxial extension has been nicely treated by Denn and Mar- 
r u ~ c i . ~ ~  Modifying their result to include surface tension gives the transient 
stress 

1 a11(t) = -- Y + PI1 - P22 = -- + 2qE [I - e-(l-2rE)t/r 
R R 1-27E 

(8b) Y 
u22 = u33 = -- 

R 
where the deformation begins at  time zero. For small E, the response is lin- 
ear viscoelastic.66 When E is greater than 1/27, the stress grows in an un- 
bounded manner. For long duration times when E is less than 1/27, eq. (5a) 
is valid, but with x a function of TE.  Specifically, 

37 
(1 + E T )  (1 - 2E7) X =  
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Fig. 3. Filament containing a periodic disturbance in its diameter. 

For small 7E, x is simply 37, or three times the shear viscosity. 
More general useful constitutive equations may be developed for viscoelas- 

tic fluids which can be applied to analyze flow problems. The authors have 
found constitutive e q ~ a t i o n s ~ ~ , ~ ~ , ~ ~ ~ ~  of form 

of great use, where c-l is the Finger deformation tensor and c the Cauchy de- 
formation tensor, and rnl(z) and 4 2 )  are relaxation modulus functions de- 
pendent upon deformation invariants. Generally, eq. (6) is equivalent to the 
special case of eq. (9) for which rn2(z) is zero and rnl(z) is a single exponential 
term. Transient stress development in uniaxial extension of single integral 
constitutive equations has received attention in the l i t e r a t ~ r e . ~ ~ , ~ ]  

Experimental studies of stress development in molten polymer filaments 
undergoing constant stretch rate have been made by Ballman,72 M e i ~ s n e r , ~ ~  
Vinogradov et al.,74 and Everage and Ballman.75 The latter a ~ t h o r s ~ ~ - ~ ~  
have observed the unbounded growth of stress at high deformation rates. A t  
low deformation rates, the x-E function is obtained. The x function has also 
been obtained by C o g ~ w e l l ~ ~  using constant stress experiments. 

ANALYSIS OF NONHOMOGENEOUS DEFORMATION 

Dynamics 

The basis of our analysis is C a u c h y ’ ~ ~ ~  law of motion: 
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As we are treating thin cylindrical filaments, we will use Cauchy's law inte- 
grated across the filament cross section. Matovich and P e a r ~ o n ~ ~  have car- 
ried out such an integration for the steady-state case including consideration 
of the influence of surface tension on the filament periphery. Generalizing 
this to the unsteady-state gives 

a [ ~ R ~ a l l ]  + - [BaRy] 
a t  ax 1 

where R is the filament diameter. Note that the special case of the above 
equation where inertia and surface tension are neglected is 

where F is the tensile force acting on the filament cross section. 

Disturbances and Linearized Disturbance Equations 

We presume that the periphery of a filament of a fluid is perturbed by an 

R = f i + t  (13) 

which results in the velocity components u1, u2, and u3 being perturbed ac- 
cording to 

amount ,$ (see Fig. 3): 

u 1 =  U l  + u'1 (144 

dR D[ = U R  + u'R = - + - 
x 2 = R  d t  Dt  

where D t / D t  is the time derivative following the fluid. These components 
are interrelated through continuity 

Noting that 01 and OR satisfy continuity, we may rewrite eq. (15) as follows: 

For uniaxial extension, as specified in eq. (3), we have from eq. (14) and eq. 
(15) 



2518 IDE AND WHITE 

We will presume that the disturbance [ varies periodically along the length 
of the filament, i.e. (see Fig. 3), 

~ ( t , x l )  = $(t)eikxl (19) 

As the filament is being steadily elongated, the periodicity of the disturbance 
changes. For an incompressible fluid, the wavelength X and wave number k 
vary according to 

= X(0)e"t (20a) 

(2ob) 
27T 
A 

k = - = k(O)e-Et 

A filament fails when [ ( t )  becomes equal to R ( t ) .  

Newtonian Fluid Filaments 

In extending Newtonian fluid filaments, breakup results from the interac- 
tion of capillarity and ductile failure. For low-viscosity fluids, we may ne- 
glect extension since they break rapidly by capillarity, while for high viscosi- 
ty, we may neglect inertia. Let us look at  each of these cases in turn. First, 
the low-viscosity case where we neglect extension so that the filament is origi- 
nally stationary. Substitution of eq. (5) into eq. (11) gives 

?rR2p-=--[ au1 a xR2 ( -pr + 3q iul)] + ; a [27~Ry] 
a t  axl ax 1 

We now introduce eqs. (13), (18), and (19) with 

where in obtaining eq. (22b) we follow R a ~ l e i g h l ~ - ~ l  and Weber23 (see Lev- 
ichls for a detailed development). This allows us to transform eq. (21) into 

d2$ 3qk2d$ yk2 
d t2  p dt 2pR 

+-(I - k2R2)$ __- - --- 

This clearly has an exponential solution 

where 
i(t) = i(0)e.t 

which may be readily seen to be Weber's23 asymptotic solution of Rayleigh's 
analysis. The asymptotes for low and high viscosity are 

lim a = v'yk2/2pR (1 - k2R2) 
p/q-= 

(27) lim a= -(1- k2R2) 

where for eq. (26) kR would be 0.7, and in eq. (27) kR would be zero to give 

Y 
p/7+0 67R 
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Fig. 4. 

the maximum growth rate. Thus, the corresponding wavelength increases 
with viscosity. 

Let us now turn to the problem of the very viscous filament. Here, we con- 
sider the interaction of surface tension and ductility in the absence of inertial 
effects. The equation of motion is 

Equation (28) with the aid of eqs. (13), (14) ,  (16), (19), and (22) reduces to 

1 d g  1 dR y 
g d t  R d t  617R 

+ - (1 - k2R2) - --- 

The maximum growth rate is for k equal to zero, and for stretching with con- 
stant rate E ,  we obtain 

This shows an additive effect of ductility and capillarity on disturbance 
growth. 

For the case of very high viscosity so that capillarity can be neglected, 
d 

--+ -(RE) = 0 1 d E  1 d R  
[ d t  R d t  d t  

Equation (31) may also be obtained as a linearized form from the original 
analysis of ductile failure due to O r ~ w a n , ~ *  which is based on the model 
shown in Figure 4. Orowan showed that the cross-sectional area of a defect 
in a Newtonian fluid filament remained constant in time, that is, 

dA' d d - -_  - [rR2 - T ( R  - 4)'] = - (RE) = 0 
d t  d t  d t  

where A' is the perturbed cross section. 
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3 

Fig. 5. Development of disturbance as a function of relaxation time r .  Prediction of eq. (35) 
at E = Usec. 

Viscoelastic Fluid Filaments 

With viscoelastic fluids, we are generally treating high-viscosity liquids and 
may neglect inertia and capillarity. If we consider long-duration stretching 
for highly viscoelastic fluid, we note from eq. (8a) that P u  >> P 2 2  for large TE.  
If we neglect P22, we can obtain an analytical solution. Introduction of eqs. 
(6), (13), (14), (17), (18), and (19) into eq. (11) gives (after considerable ma- 
nipulation) 

where 

The integrated form is 
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(7~9~ 
- (1 - 27E)(l - TE) In 

(1 - 7E) - 7,Q-(l--a~E)t/7 

l-27E 

+ 
7E 

ln(l 
- ,rE)eU-2~E)tlr _ 7E 

l- 27E 1-27E (35) 

The predictions of the above expression are shown in Figure 5 for varying r at 
E = l(l/sec). 

If we consider long-duration growth of disturbances, the logarithmic terms 
of the above equation may be simplified to yield 

&(t) E(l-37E++ TE l-7E 
t(O) - 2(1 - TE) l-~E'~l--27E for TE <i (364 

&cl= E 
E(O) 

- 5 t + In(Et + 1) for TE = i 

lnrn TE 
E(O) 

~ In 
TE 

l- TE 27E- 1 
for TE > i (36~) 

For small values of rE, the disturbance grows with time and when 7 - 0, this 
reduces to the Newtonian result eq. (31). When TE increases to a value of %, 
disturbances cease to grow; and when rE is greater than $$, the disturbances 
are indeed damping out. 

This enhanced stability of filaments to disturbances may be traced to the 
unbounded development of stress in nonlinear viscoelastic fluids at large 
values of TE as shown by Denn and MarruccP7 and represented in eq. (8). 
Because of this effect, the deformation response to the high stresses in re- 
gions of minimal cross section is small and disturbances do not grow. It is of 
interest that the criterion of disturbance growth of TE equal to s is more se- 
vere than the one of stress growth of TE being equal to K. 

Just as the Newtonian fluid ductile failure asymptote is equivalent to the 
simple Orowan model, so the present analysis is equivalent to that of Chang 
and Lodge.8 An exact comparison is possible but would generally require a 
numerical solution to the Chang-Lodge nonlinear integral equation. It is, 
however, possible to obtain an analytical solution for the asymptote of r - 0~. 
This would be the case for a material like vulcanized rubber.7g 

Referring to Figure 4, the stress can be expressed as 

ml(t) = P11 - P22 = G(clI-'- c~~-~) = G [ (+g)2 -$g (37) 

A simple force balance of two cylinders of different cross-sectional area AI, 
A2 gives, after neglecting P22, 

2 AZ(t) _ Az(O) 

Al(t) ( > Al(O) (38) 

The above expression seems to be able to approximate their result for the ma- 
terial parameters and conditions they employed. In terms of radius, we ob- 
tain from the above equation 

E(t) R(t) -=p--- 
No R(O) (39) 
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Fig 6. Elongation to break L(ts) /L(O) as a function of 31$R(0)/7 with [(O)/R(O) as a parame- 
ter. 

For constant stretching rate, the above ratio becomes 2e-Et/2, which is the 
asymptotic value of eq. (36c) for 7 - 00. 

We can also obtain an analytical result without neglecting P2z for this 
asymptotic case: 

We note that neglecting P22 does not affect our result if we are concerned 
with the long-time asymptote. 

PREDICTION OF SPINNABILITY 

Interpretation from Theory 

It is possible to use the results of the previous section to predict the length 
of a thread which may be formed by extending a cylinder. This is done by 
determining the time t B  required for the disturbance to grow to the size of 
the cylinder radius, i.e., 

[ ( t B )  = R(tB) = R(O)e-EtB/2 (41) 
and then to compute the elongation to break 

For Newtonian ductile and capillarity failure, introducing eq. (30) into eq. 
(41) gives 

We note L ( t B ) / L ( O )  becomes equal to R(0)/[(0) in the absence of surface ten- 
sion. The elongation to break L ( t B ) / L ( O )  was determined as a function of 
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37ER(O)/y taking [(O)/R(O) as parameter and plotted in Figure 6. The di- 
mensionless number y/37ER(O) is the ratio of surface tension to elongational 
viscous stress (a capillarity number). 

For the convected Maxwell fluid with rE < l,$ and no surface tension, sub- 
stituting eq. (36a) into eq. (41) gives the elongation to break: 

l - T E  1 (44) 1 R (0)  - In - - [ (1 - r E )  In - - TE In L ( t B )  
L(0)  1 - 2 ~ E  E(0) 1 - 2rE 

This is the expression for purely ductile failure of a viscoelastic fluid. We 
note the spinnability is completely characterized by the defect size [(O)/R (0) 
and a dimensionless number T E ,  the Weissenberg n ~ m b e r ~ ? ~ ~  appropriate to 
this type of deformation. As TE increases, so will L(tB) so that viscoelastici- 
ty increases spinnability. When TE > Y2, the filaments may be stretched out 
indefinitely according to our theory. When the elongation rate E goes to 
zero, it is found that viscoelasticity destabilizes the capillarity breakup of a 
liquid ~ y l i n d e r . ~ ~ . ~ ~  For finite E ,  however, viscoelasticity acts to stabilize the 
cylinder. For disturbances introduced into stationary fluids, viscoelastic 
constitutive equations reduce to linear viscoelasticity which is always “soften- 
ing” rather than “strain hardening.” It is possible that linear viscoelastic 
stability analyses may generally mispredict the growth characteristics of dis- 
turbances when these reach finite amplitudes. This would be especially the 
case in a problem like the growth of disturbances propagated by surface ten- 
sion on a filament which involves large deformation rates when the amplitude 
become large. Similar views are expressed by Gordon, Yerushalmi, and 
Shinnar.31 When steady flows exist, the nonlinearities directly appear in the 
linearized analysis, and this problem does not arise. 

In the above discussions, we have only considered tensile failure resulting 
from ductility and surface tension. For a real material, we need also consider 
cohesive fracture resulting from high tensile stresses and strain energies. In- 
deed, there may be no true ductile failure because as the neck thins down, a 
critical stress may always be exceeded. We shall presume that cohesive fail- 
ure will always follow if the total applied stress exceeds some critical stress 
ccr. Returning now to our extending viscoelastic fluid filament, we see that 
when TE > K, the stress increases exponentially with time so that in practice 
the stress reaches the critical value which leads the material to fracture. In 
this asymptote, P22 is negligible and the spinnability may be expressed as 

When TE = %, the predictions of the ductility and fracture mechanisms are 

which are unrealistically large. This is because the stress is predicted to in- 
crease linearly with time when TE = %. We can probably improve this by 
using more realistic constitutive equations of the form of eq. (9) in which the 
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Fig. 7. Predicted elongation to break L ( ~ B ) / L ( O )  as a function of molecular weight for polysty- 
rene at 16OOC based on eqs. (431, (441, and (45) using the rheological data of Onogi, Masuda, and 
K i t a g a ~ a ~ ~  and t(O)/R(O) = 0.01, R(0) = 0.1 cm, y = 30 dynedcm, ucr = 108dynes/cm2, and E = 
0.01 Vsec. 

dependence of r upon E is included. In this case, the stress would be pre- 
dicted to increase exponentially or reach steady-state value but no linear in- 
crease with time for any stretch condition. 

Response of Homologous Series of Polymer Melts 

By knowledge of the dependence of rheological properties upon molecular 
weight of homologous series of molten polymers, we may use the results of the 
previous section to compute the dependence of fiber spinnability upon molec- 
ular weight. Substantial data on polystyrene melts with narrow molecular 
weight distributions are available, largely due to the efforts of Kyoto and Na- 
goya r e ~ e a r c h e r s . ~ ~ , ~ ~ , ~ ~ ~ ~  Less extensive but significant data exist on other 
systems such as p o l y i s ~ b u t y l e n e ~ ~ * ~ ~  and poly(viny1 a ~ e t a t e ) . ~ ~ > ~ ~  Using these 
data, we can determine 7 and r as a function of molecular weight, neglecting 
non-Newtonian viscosity in the approximation of the convected Maxwell 
model. At low molecular weights, polymer melts are Newtonian fluids, with 
the viscosity increasing approximately as the first power of the molecular 
weight. As molecular weight increases, they reach a transition region in 
which viscoelasticity develops, the viscosity function becomes non-Newto- 
nian, and the zero shear viscosity changes to about a 3.5 power dependence 
upon molecular weight.49,51p56,57 

In Figure 7, we plot L(~B) /L (O)  versus molecular weight for polystyrene at  
16OOC for filaments with elongation rates of 0.01 sec-l using eqs. (43) and 
(44). The rheological properties r and 7 are taken from the work of Onogi, 
Masuda, and K i t a g a ~ a . ~ ~  Initial defect size [(O)/R(O) = 0.01, initial radius 
R(0) = 0.1 cm and surface tension y = 30 dynes/cm are used. It can be seen 
that the “spinnability” L ( t ~ ) l L  (0) is predicted to increase with molecular 
weight and to eventually go to very large values when rE is greater than % 
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Fig. 8. Experimental apparatus for study of extension of molten polymer filaments. 

and approaching M. This would be at  a value of r of 50 sec for E equal to 
0.01 sec-l. This is, of course, unrealistic as infinite stresses would develop in 
the filament as it is so extended. We now invoke a critical stress leading to 
cohesive failure. The value of L ( ~ B ) / L ( O )  may be computed from eq. (45). 
As 9 and r increase rapidly with molecular weight, L(tg) /L(O) rapidly ap- 
proaches the asymptote v'ucrr/q or v'uJG. This is shown in Figure 7 using 
a critical stress ucr of los dynes/cm2. 

The transition between the surface tension-ductility curve and the cohe- 
sive failure predictions in Figure 7 seems abrupt. We can probably improve 
this by using better constitutive equations in which the dependence of r upon 
E is included. 

EXPERIMENTAL 

Apparatus and Materials 

We have carried out various experiments in our laboratories on the stabili- 
t y  of molten polymer filaments using apparatus of the type shown in Figure 8. 
The polymer filament floats near the surface of the silicone oil and is taken 
up by two drums. The oil bath is 30 cm long and 11 cm wide, and the silicone 
oil is about 11 cm deep. The temperature is controlled within i1"C. The 
apparatus is similar to that of M e i ~ s n e r ~ ~  and, to a lesser extent, C ~ g s w e l l . ~ ~  
The apparatus enables one to perform and observe constant elongation rate 
experiments and has been most useful in studying the mechanism of breakup 
of filaments. 

Our studies thus far have emphasized polyethylenes. Several of the poly- 
mers investigated and their behavior are summarized in Table I. The series 
of polymers were so chosen as to represent a wide range of molecular weights 
and rheological properties as well as include both low-density and high-densi- 
ty varieties. 

Results 

The experimental results are summarized in Table I. Low molecular 
weight polyethylene wax showed an obvious capillarity breakup. 

High molecular weight low-density polyethylene filaments generally exhib- 
it cohesive fracture at high extension rates but can be extended almost indefi- 
nitely at  low rates. A t  constant elongation rate E ,  as melt index decreases 
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(molecular weight increases), the elongation to break decreases. The trends 
are in agreement with Figure 7. 

We also studied high-density linear polyethylenes. These melts exhibited 
ductile failure on being stretched, and only small elongations to break were 
found possible. 

Comparison with Other Experimental Studies 

Our experimental results are similar to those of other researchers. Zia- 
bicki'l has examined experimental data from the literature and found that 
the thread length L may be represented as a function of the product of viscos- 
ity 7 and applied velocity V. The data are similar to Figure 6 at low 7V but 
decrease at  high qV. This is presumably due to fracture. If one interprets 7 
as related to molecular weight, the Ziabicki data summary has the same form 
as Figure 7. 

Experimental studies by Chen, Hagler, Abbott, Bogue, and White42 in their 
weight-dropping elongational flow apparatus found that low-density polyeth- 
ylene filaments could readily be deformed, but high-density polyethylene ex- 
hibited ductile failure. Presumably, the reason our analysis is unable to cope 
with observations of this sort is that it is based upon a simple Maxwell model, 
and one would probably need to use more sophisticated constitutive equa- 
tions similar to eq. (9). 

Various r e s e a r c h e r ~ ~ * J ~ , ~ ~  have considered the influence of molecular 
weight distribution on tensile failure of filaments. Broadening molecular 
weight distribution enhances filament stability and increases elongation to 
break. This is not readily interpretable in terms of our theory. A more so- 
phisticated constitutive equation- is needed. The approach of Takaki and 
B ~ g u e ~ ~  does suggest how the necessary constitutive equations might be for- 
mulated. 

APPLICABILITY TO CONTINUOUS SPINLINE 

The application of the above analysis to continuous fiber spinline (see Fig. 
9) must now be discussed. The problem we are basically concerned with is 
whether the filament formed from the extruder can be successfully taken up 
on a bobbin. Clearly, capillarity, ductile failure, fracture, or their combina- 
tion can prevent this. To analyze this, one may consider to some extent the 
motion of an initial disturbance with distance or residence time along the 
length of a spinline and cohesive failure or fracture occurring at  distances 
from the spinneret where the tensile stress in the descending fiber equals the 
critical stress. However, one must be careful as there are differences. Most 
obviously, (i) the deformation rate E varies with position so as to make the 
applied force F almost constant, (ii) the initial conditions at  the spinneret are 
complex and involve extrudate swell recovery from flow within the capillary, 
and (iii) there are enormous temperature gradients along the spinline with re- 
sulting positional variations in rheological properties. 

More subtly, there are basic differences in the dynamic equations of ex- 
tending a filament and a continuous spinline because of the form of the conti- 
nuity equation. Analyses of the unsteady state dynamics of moving threa- 
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Fig. 9. Continuous spinline. 

dlines have been carried out by Kase and M a t s ~ o , B l - ~ ~  Pearson, Matovich, 
and Shah,84985 Gelder,B5 Han, Lamonte, and Shah,B7 and ZeichnerF8 among 
others. The appropriate balance equations should be seen to be 

a a 
- (rR2)  + - (TR2u1) = 0 
at ax 1 

(47) 

a rR2p [ avl + ul””’] = a (rR2all) + - ( 2 ~ R - y )  + TR2pg (48) 
a t  axl ax l  ax 1 

rrR2pc [ aT + u1”] = -2rRh(T - T,) 
a t  ax 1 

(49) 

Equation (48) is the same as eq. (13) and represents a force balance, while eq. 
(47) is continuity and eq. (49) is a heat balance where T is temperature, c is 
heat capacity, h is a heat transfer coefficient, and the subscripts refers to the 
surroundings. An important and different role is played by continuity in the 
case of a continuous threadline as opposed to uniaxial stretching of a fila- 
ment. 

In the residence time of the 
threadline, will disturbances entering just below the spinneret cause failure 
or will the stress rise above a critical value as the filament was forced to draw 
down? Low-viscosity Newtonian fluids (and thus low molecular weight or- 
ganic compounds) will exhibit capillarity breakup into drops or ligaments 
well before the take-up roll is reached. In a slightly more viscous (and thus 
slightly higher molecular weight) fluid, the rise in viscosity begins to stabilize 
the filament but gravitation forces induce a breakup of the thread due to a 
combined capillarity-ductile failure mechanism. This again occurs before it 

The basic question that we must ask is: 
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reaches the bobbin. At  still higher viscosity levels, continuous spinlines 
should be possible. 

Let us now turn our attention to very high molecular weight “elastic” poly- 
mer melts and the limitations on their spinline behavior. These filaments 
will fracture at  low take-up velocities due to the stresses required to draw 
down the spinline diameter. The higher the characteristic time, the lower 
the elongation rates and the take-up velocity required to achieve the critical 
stress. 

The conclusions of the above paragraphs are in general agreement with 
spinline experiments performed in our laboratories. It was found impossible 
to melt spin low molecular weight paraffins because of capillarity, but among 
commercial polyethylene melts, spinnability decreases with increasing molec- 
ular weight because of fracture.45 Nadella89 has found a similar decrease in 
spinnability with increasing molecular weight for polypropylenes. 

We now inquire about the intermediate region of spinning conditions 
where capillarity instabilities are damped out by viscosity and the spinline 
stresses are too small to cause cohesive fracture. This is the region where in- 
stabilities and ultimate spinline breakdown must be due to the analogue of 
ductile failure. The formulation of this problem is straightforward and is 
equivalent to that first given and solved by Kase, Matsuo, and Yoshimoto82 
and later by Pearson and M a t ~ v i c h ~ ~  and Gelder.86 These authors predict 
the development of an instability at  a critical draw-down ratio consisting of a 
periodic variation of filament diameter. Such an instability has been ob- 
served by several researchers and is known as draw re~onance.8~,~0,9~ Draw 
resonance is a continuous threadline analogue of ductile failure. The reason 
for the different appearance of the ductile failure phenomenon in the contin- 
uous threadline is probably that the different form of the continuity equation 
leads to stability equations of higher order. This would seem most apparent 
by comparing the Pearson-Matovich8* paper to the present one. 

CONCLUSIONS 

1. A theory of maximum extensibility of polymer fluid filaments is devel- 
oped as a function of the rheological properties of the fluid. Three mecha- 
nisms of failure-capillarity, ductile failure, and fracture-are proposed. A 
mathematical theory has been developed using the methods of linear stability 
theory. It shows that high viscosity prevents capillarity failure and that high 
levels of viscoelasticity (as represented by a convected Maxwell model with a 
constant relaxation time) prevents ductile failure as well, but stress develops 
indefinitely. These highly elastic melts fail by fracture. 

2. The theory developed can be applied to polymer melts and is equivalent 
to low molecular weight fluids failing by capillarity and high molecular 
weight melts by ductile failure and fracture. The theory predicts a maxi- 
mum in spinnability with respect to molecular weight. 

3. An experimental study of the failure of polyethylene melt filaments in 
tension is reported. Waxes fail by capillarity, low-density polyethylene 
melts, by fracture, and high-density polyethylene, by ductile failure. The 
higher the molecular weight of the melts, generally, the smaller the elonga- 
tion to break. 
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4. The concepts developed for simple elongational flow may be applied to a 
continuous spinline. Failure can occur by capillarity and fracture, and draw 
resonance appears to be the analog of ductile failure. 

This research was supported in part by the National Science Foundation under Grant GK 
18897. 
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